

Syllabus

PHY 152 - University Physics II

General Information

Date January 10th, 2023

Author Trevor Johnson-Steigelman

Department Science and Technology

Course Prefix PHY

Course Number 152

Course Title University Physics II

Course Information

Catalog Description Second semester of a two-semester sequence suitable for transfer students pursuing degrees in engineering, computer science, physics, or professional programs which require calculus-based physics. Topics include oscillations and waves, electricity, magnetism, AC and DC circuits, optics, and limited topics in thermodynamics.

Credit Hours 4

Lecture Contact Hours 3

Lab Contact Hours 2

Other Contact Hours 1

Grading Scheme Letter

Prerequisites

MAT 272 with a C or better and PHY 151 with a C or better

Co-requisites

None

May 18th, 2023 2:02 pm 1 of 3

First Year Experience/Capstone Designation

This course DOES NOT satisfy the outcomes applicable for status as a FYE or Capstone.

SUNY General Education

This course is designated as satisfying a requirement in the following SUNY Gen Ed category

Natural Sciences (and Scientific Reasoning)

FLCC Values

Institutional Learning Outcomes Addressed by the Course

Inquiry, Perseverance, and Interconnectedness

Course Learning Outcomes

Course Learning Outcomes

- 1. Apply basic physical principles to the study of oscillators, waves, electric charges, electrical circuits, magnetic systems, and thermodynamic systems.
- 2. Make and analyze measurements of physical phenomena, applying the proper use of units, dimensions, statistics, uncertainty, graphing, and calculation.
- 3. Apply arithmetic, algebraic, geometric and Calculus principles to the analysis of oscillators, waves, electric charges, electrical circuits, magnetic systems, and thermodynamic systems.
- 4. Connect physics to other sciences, the arts, and everyday life.

Outline of Topics Covered

Oscillations

Spring-Mass Systems

Pendulums

Driven Oscillators

Resonance

Damped Oscillators

Waves

Transverse and Longitudinal Waves

Wave Superposition

Standing Waves on Strings

Sound

May 18th, 2023 2:02 pm 2 of 3

Beats

Doppler Effect

Standing Waves in Tubes

Wave and Ray Optics

Electromagnetic Waves

Optical Instruments

Electric Charges, Forces, and Fields

Continuous Charge Distributins

Gauss's Law

Derivation of Symmetric Fields

Electric Potential

Potential in a Variable Field

Capacitors

Current and Resistance

Fundamentals of DC circuits

Systems of Resistors

Kirchhoff's Laws

Magnetic Fields

Applying Ampere's Law

Electromagnetic Induction

Fundamentals of AC circuits

Heat, Work, Calorimetry

Ideal Gases

Laws of Thermodynamics

May 18th, 2023 2:02 pm 3 of 3